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Abstract

Two-phase 1ow equations are solved on a fractal Bernasconi lattice including capillary and
viscous forces. The recursive structure of the lattice allows the use of a renormalization group
approach to calculate 1ow properties, resulting in a much faster method compared to conven-
tional simulations. The interplay between disorder or heterogeneity in local 1ow conductance and
capillary pressure e3ects is studied as a function of length scale. Flow related quantities such as
water cut curves, saturation pro4les, and breakthrough times are found to depend on the size of
the system and on disorder strength. As disorder increases larger sizes are needed to get good
averaging. It is found that this lattice can be used to get a good approximated solution of the
two-phase 1ow equations in complex anisotropic structures, since it grants considering the e3ect
of anisotropy on 1ow properties, a condition relevant for a variety of industrial applications.
c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The understanding of the behavior of 1uids inside a disordered structure is relevant to
many industrial applications such as enhanced oil recovery, the e=cient use of catalysts,
the control of water pollution, and waste disposal among many areas [1–3]. The study
is frequently done by solving the 1ow equations on an Euclidean lattice, or perhaps
on a simple hierarchical structure properly selected for computational advantage [4].
There are situations however, where the disorder inherent to the structure is highly
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complex, with a topology that cannot be easily mapped into a hypercubic or any other
simple lattice. For those cases, it is convenient to use a fractal structure such as the
Bernasconi lattice [5], which allows to model anisotropy e3ects commonly observed at
large scales in real systems.
In this work, the Bernasconi lattice is used to solve two-phase 1ow equations for

incompressible 1uids including capillary and viscous forces. This lattice has been used
previously by Hansen et al. [6] to handle two-phase 1ow using a real space renor-
malization group algorithm (RSR), when capillary forces are negligible. The numerical
algorithm developed in this work also exploits the advantages of the recursive type of
calculation of a RSR scheme, turning out to be about 40 times faster than conventional
simulations performed on a hypercubic lattice. The computational savings achieved in
our formalism allows to study the e3ect of disorder, anisotropy and scale on charac-
teristic 1ow quantities such as saturation pro4les, breakthrough times in displacement
processes, and 1uid recovery curves among others.
In a typical simulation of an oil reservoir or an aquifer, it is important to model

the behavior of 1uid 1ow at various scales [3,4]. Very frequently, the information
available from laboratory tests is in the range of millimeters to centimeters, whereas
the simulation cells used to model the reservoir may be larger than a few hundred
meters or even a few kilometers. Thus, we are interested in the 1ow behavior at
scales that di3er in length factors of the order 106–108. Besides the role of the length
scales, another important aspect is the fact that only statistical information can be
gathered.
In general, there is a limitation on the size of simulation cells that may be used

to model a reservoir. Each grid cell has e3ective property values de4ned according
to the type of modeling that is relevant to the study. Since the available informa-
tion is measured at a 4ne scale, the e3ective properties are assigned based on the
requirement of similarity between the 1ow behavior at the small and the large scales.
Aside from the limitation of the cell size, the numerical approach used in the simu-
lation is also important [3,4]. In a conventional simulation, the solution of the 1ow
equations on a hypercubic lattice require the use of matrices and the performance of
matrix operations, such as inversion, which are known to be computationally very
expensive.
Recent work [7–9] has shown the advantages of using hierarchical structures to solve

1ow equations. These advantages are given basically in terms of computer time and
memory savings. However, these hierarchical lattices may have severe limitations when
it is necessary to consider e3ects due to anisotropy heterogeneities, commonly observed
in real systems, such as oil reservoirs and aquifers.
In this work, we present the structure used and the numerical formalism developed

to solve the 1ow equations in Section 2. Then, results from two-phase 1ow simulations
on the fractal lattice, and a comparison with similar experiments performed on a square
lattice and a hierarchical structure with an eight shape appear in Section 3. Section 4
deals with anisotropy e3ects on 1ow properties, and 4nally a summary and conclusions
are given in Section 5.
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2. Model description and �ow equations

A good understanding of the 1uid behavior at any scale requires a detailed 1ow
simulation to capture the e3ects of spatial heterogeneities, correlations, and anisotropy,
which are normally ignored or poorly considered in usual average estimates.
For this task, a numerical model is proposed. This model must guarantee that the
solution of the 1ow equations for the given geometry, with particular initial and
boundary conditions, represents the state of the system at a given time. The pro-
cess normally leads to the development of a simulation program, which is used for
the computation of a speci4c quantity or the determination of an e3ective
property.
As a basic lattice we consider a recursive structure generated by the repeated ap-

plication of the motif shown in Fig. 1. The motif is build using 4ve bonds arranged
in a Wheatstone bridge, as indicated in Fig. 1 as order 1 construction. For the next
generation, each bond is replaced by the same motif, and the process is repeated up
to the desired order.

Fig. 1. Basic motif and recursive scheme for generation of the Bernasconi lattice.
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Fig. 2. Schematic representation of the assignment of local properties from a continuous medium to the
fractal lattice.

Even though this lattice is generated in a two-dimensional space, it leads to a
structure with a fractal dimension dF = log 5=log 2. There are some bonds, here labeled
as superconducting, that need to be together to assemble the structure. This is known
as the Bernasconi lattice [5]. It was reported for 4rst time in the calculation of e3ective
conductances of random resistor networks, by using a renormalization group approach
(RG).
In a typical situation, the formulation begins by describing a piece of disordered

material that we want to study. Assuming that it can be considered as a continuous
medium, it is discretized into cells as represented schematically in Fig. 2. To such a
discretized system, we associate a square lattice whose vertical and horizontal bonds
are chosen as indicated, forming an H-shaped structure in each case. These structures
give rise to the fractal lattice.
To each bond of the lattice we assign local properties. One of the most rele-

vant properties for 1uid transport is the absolute permeability, which is a measure
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of the 1ow conductance. Permeability values at the 4ne scale are taken from a power
law-distribution of the form

gPL(k)= |	|k	−1 : (1)

Parameter 	 is in the range 0¡	¡ 1. It allows modeling a uniform permeability dis-
tribution when 	→ 1, and a strongly disordered system where the permeability contrast
may be as large as 30 orders of magnitude when 	≈ 0:1. The advantage in using this
type of distribution instead of others such as the lognormal, resides in the fact that by
just changing one parameter, one can model weakly heterogeneous structures as well
as extremely heterogeneous ones.
The approach used here consists essentially of two steps: (i) the transformation of

the original lattice into a fractal (Bernasconi) lattice and (ii) the resolution of the 1ow
equations including capillary forces on the recursive structure. In this way we take
advantage of the self-similar property of the fractal structure, which allows getting
an approximated solution at considerable reduced computer times when compared to
conventional simulations.
On the structure, the following incompressible two-phase 1ow equations are solved:

Sw + Sn =1 ; (2)

�
@Sw
@t

=−∇ · q̃w; �
@Sn
@t

=−∇ · q̃n : (3)

Si are the saturation of the wetting (w) and non-wetting (n) phases, respectively, and
� the porosity of the sample. The phase 1ux is given by the generalization of Darcy’s
law [2]

q̃i =− kkri
	i

∇pi ; (4)

where k is the absolute permeability, kri the relative permeability of phase i; 	i the
viscosity of phase i, and pi the corresponding phase pressure. The di3erence in pres-
sure of the non-wetting and wetting phase is known as the capillary pressure pc.
The permeabilities kri and the capillary pressure pc are non-trivial functions of the
phase saturation and the saturation history [2]. In this study, typical Brooks–Corey
curves are used to model the saturation dependence of these quantities [10]. These are
given by

krw = korw

(
Sw − Swi

1− Sor − Swi

)nw
= korw(Sr)

nw ; (5)

krn = koro(1− Sr)nn ; (6)

pc(Sr)=pb(Sr)−1=� ; (7)

where Swi and Snr are the residual saturations of the wetting and non-wetting phases,
respectively; nw, nn, and � are the Corey exponents for the relative permeabilities and
capillary pressure, quantities dependent in a non-trivial way on the pore geometry and
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wetting a=nity of the solid surface, and pb is the entry pressure or the minimum
pressure required to displace the wetting 1uid.
The implicit pressure explicit saturation (IMPES) [4] scheme is used to solve the

1ow equations following an upwind criterion, in which the local relative permeabilities
are weighted according to the local 1ow direction [3]. Since capillary pressure is taken
into account, the total 1ux between any two nodes i and j consists of a viscous term
and a capillary 1ux given by

Qij = gi; j(pi;n − pj;n)− Qi;jc ; (8)

where gi; j is the total conductance of the bond between nodes i and j for any of
the 1uids (one for the wetting phase and another for the non-wetting phase). The
conductance of a bond to the wetting 1uid is de4ned as

gi; jw =
(
Akij
l	

)
krw(Sw) ; (9)

A is the cross-sectional area and l the bond length. A similar expression holds for the
conductance of the non-wetting phase. The total conductance is given by

gi; j = gi; jw + gi; jn : (10)

We assume that initially each node on the lattice has an initial saturation, and that all
the nodes have the same porosity.
An unsteady state displacement simulation is performed on the structure, injecting

the wetting 1uid into a system with an initial saturation distribution composed mainly
of the non-wetting 1uid. The experiment may be done at a constant injection rate or
constant gradient pressure across the sample. The injection itself is done on the left
border of the lattice, with no 1ow conditions on the top and bottom boundaries.
The saturation of each node is updated by using Eq. (3), which is expressed as the

di3erence between the 1uid that enters the node and the 1uid that 1ows out of the
node by explicit integration

Siw(t +Ot)= Siw +
Ot
’

(∑
i; in

Qi; inw(t)−
∑

Qi;outw

)
: (11)

In (11) ’ is the pore volume, de4ned as a function of porosity as ’=�Al. The time
step, Ot, is chosen such that the maximum wetting-phase saturation change at any time
is 0.01.
It is important to note that in the mapping from the square lattice into the fractal

lattice, one bond on the square lattice may have more than one bond associated in the
fractal lattice. However, not all the bonds of the square lattice are used to construct
the fractal lattice. This di3erence must be taken into account when doing comparisons
with simulations performed on such lattices (here the square lattice and the hierarchical
eight-shaped lattice).
Also, important in this context is the assignment of the pore volume since it depends

on the bond assignment. The pore volume in the fractal lattice is assigned by summing
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Fig. 3. Detail of lozenge or basic fractal lattice motif.

the volumes of all the bonds connected to a given node, and then multiplying it by a
1=3 factor, that is

’i =
1
3

∑
j

’i; ij ; (12)

with ’i being the pore volume of node i on the fractal lattice, and ’i; ij the pore volume
of the extreme of the ij bond. In the case of a homogeneous system, the central bond
of the basic motif does not transport any 1ow and the fractal Bernasconi lattice reduces
to a Berker or diamond lattice [11]. For this lattice the pore volume assignment has a
weight factor of 1=2 instead of the 1=3 of Eq. (12).
The renormalization scheme is used to calculate the currents that 1ow along the

bonds of the lattice. The main reason for using this renormalization method is that
two-phase 1ow equations can be solved much faster than in the square lattice [12,13].
Assuming that for a given time the bonds shown in Fig. 3 have conductances g01; g02;
g12; g13 and g23, respectively, and that there is a pressure di3erence P03 between nodes
0 and 3, the following system of equations must be solved in order to 4nd the 1ow
rates through each bond:

q01
g01

+
q13
g13

=P03 ; (13)

q02
g02

+
q23
g23

=P03 ; (14)
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q01
g01

+
q12
g12

− q02
g02

= 0 ; (15)

q12 + q13 − q01 = rIc ; (16)

q02 + q12 − q23 = rIIc ; (17)

with rIc ≡ qc12 + qc13 − qc01 and rIIc ≡ qc02 + qc12 − qc23 , respectively. Here qc depends
on gw and Opc. The solution of these equations give the 1ow rates at each bond:
q01; q02; q12; q13 and q23, which depend on: P03; g’s; qc’s. From these values, we
may 4nd an expression for the total 1ow rate separating viscous and capillary e3ects

Q03 =G03P03 − Qc03 ; (18)

where G03 is the e3ective conductance, and Qc03 takes account of the total capillary
1ux e3ect. It is easy to verify that

G03 =
g02d02 + g01d01

r
; (19)

Qc03 =
qc01d01 + qc02d02 + qc12d12 + qc13d13 + qc23d23

r
; (20)

with

d01 ≡ g23g13 + g02g13 + g23g12 + g13g12 ; (21)

d02 ≡ g23g13 + g23g01 + g23g12 + g13g12 ; (22)

d12 ≡ −g02g13 + g23g01 ; (23)

d13 ≡ g12g02 + g23g01 + g01g02 + g01g12 ; (24)

d23 ≡ g02g13 + g01g02 + g01g12 + g12g02 (25)

and

r ≡ g12g02 + g02g13 + g01g02 + g23g12 + g23g13 + g23g01 + g13g12 + g01g12 :

(26)

These expressions allow calculating the 1ow rates across each bond on a fractal lattice
of any size through a recursion algorithm. Given values of g’s for each bond and the
pc’s for each node at the 4ne scale, G’s and Qc’s can be calculated for a renormal-
ized lattice. This process is repeated until e3ective values of G and Qc are obtained
for the entire lattice. Once the 1ow rates are known, the saturations can be updated
(by explicit time integration) using Eq. (11). This method of calculation is more ef-
4cient than conventional ones in the sense that for a lattice of size N =4ord, we need
5ord =N log 5=log 4 ≈ N 1:16 operations instead of the N 3 operations needed for solving the
same equations on a square lattice.
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3. Two-phase �ow simulations: a displacement experiment

A displacement experiment is performed on the fractal lattice by injecting the wet-
ting 1uid on the left-hand side of the lattice, and measuring the 1uid production on the
right-hand side. The top and bottom boundaries have the conditions of no 1ow. Ini-
tially, each node has non-wetting-phase saturation of 0.80. The residual wetting-phase
saturation is 0.25 and 0.2 for the non-wetting phase, respectively. The porosity of the
sample is 0.3. In the simulation, the Brooks–Corey correlations are used with exponents
nw =4; nn =2 and �=2, respectively.

3.1. Saturation pro5les

In Fig. 4 a typical saturation pro4le after the injection of 0.25 pore volumes of
wetting 1uid in a system of order 5 is shown. The solid line corresponds to the pro4le
obtained for a 1D homogeneous system. In the homogeneous system all the bond
permeabilities have the same value, normalized to 1. The excellent agreement of both
pro4les is clearly seen.
When the capillary pressure is included, the pro4les are smoother and the cor-

responding saturation decrease in value. This is expected from the fact that the
capillary pressure term responds to saturation gradients on the sample. The excel-
lent agreement between the pro4les obtained for a 1D homogeneous system and the
fractal lattice is observed in Figs. 5(a) and (b) for entry pressures of 1.5 and
3.0, respectively.

Fig. 4. Saturation pro4le after the injection of 0.25 pore volumes of wetting 1uid into a homogeneous system
without capillary pressure e3ects.
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Fig. 5. Saturation pro4les after the injection of 0.15 pore volumes of wetting 1uid into a homogeneous
system including capillary pressure e3ects. (a) Entry pressure pb =1:5 and (b) pb =3:0.

3.2. Saturation maps

Saturation maps for systems of size 32 × 32 and various disorder conditions are
shown in Figs. 6 and 7. They correspond to the saturation values at the nodes of the
fractal lattice mapped onto a square lattice for easier visualization. Fig. 6 corresponds
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Fig. 6. Saturation maps after the injection of 0.15 pore volumes of wetting 1uid into a fractal lattice for
various disorder conditions without capillary pressure e3ects. The map represents a mapping of the nodes
from the fractal lattice into a square lattice. Black sites denote blocked sites.

to the solution of the 1ow equations without the capillary pressure term, whose e3ect
is represented explicitly in Fig. 7. A few observations about the maps are in order:
(i) In the 4gures, the black areas represent blocked sites. The term blocked site is

used to describe those sites that were cut after the solution of the single-phase
1ow case (for having the smaller contribution to the 1ow) in order to get the
same pore volume of an equivalent square lattice.

(ii) According to the gray scale used here, the initial condition was selected such
that a uniform light gray extends over all the allowed nodes on the lattice. The
injected wetting 1uid is represented by white. It is seen from Fig. 6 that the best
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Fig. 7. Saturation maps after the injection of 0.15 pore volumes of wetting 1uid into a fractal lattice for
various disorder conditions with capillary pressure e3ects. The map represents a mapping of the nodes from
the fractal lattice into a square lattice. Black sites denote blocked sites.

sweep e=ciency is obtained for a homogeneous system or for a system with a
mild disorder condition of 	=0:5.

(iii) When there is no capillary pressure e3ect, the front advance inside the lattice is
rather sharp, leading to strong saturation gradients inside the sample.

(iv) With capillary pressure, these advancing fronts are smoothed out, and the satura-
tion gradient inside the sample is much smaller (see Fig. 7).

(v) It is important to note that there are more nodes in the fractal lattice than in the
square lattice, where the saturation information is being mapped. In the mapping
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Fig. 8. Water cut curves as a function of size for a fractal system with disorder condition described by
	=0:2. The dotted line is the result from the solution of 1ow equations on a square lattice.

process an average of the node saturation is used to represent the di3erent bin
values.

3.3. Size and disorder e6ect on water cut curves

The e3ect of size on the water production curves, also known as water cut or
irruption curves is summarized in Fig. 8 for a disorder condition of 	=0:2. Each square
represents the production curves of 4ve di3erent experiments (small scale permeability
values). The dotted line represents the corresponding curves obtained when solving the
1ow equations on a square lattice by using conventional methods. The di3erence in the
breakthrough times is related to the di3erent pore volume associated to each lattice.
In order to make a quantitative comparison between the two lattices it is necessary to
remove some bonds of the fractal lattice in order to have the same pore volume on
both lattices. This bond cutting is performed based on the values of the bond currents
after a single-phase 1ow run by removing the bonds that have the smaller currents.
Fig. 9 summarizes the e3ects of size and disorder for 10 di3erent realizations of

local permeabilities in a fractal lattice with the same pore volume as a square lattice.
It is seen that for a given disorder condition (4xed 	 value), the water production
averages better as the system size increases. As disorder gets stronger (by de-
creasing the 	 value) larger sizes are required to get the same good average. Also,
it is observed that the breakthrough time is shorter for the more heterogeneous
system, where the injected 1uid experiences channeling, since more tortuous paths
are followed due to the high permeability contrast existing in the sample. The break-
through times on the fractal lattice are shorter than those obtained in a conventional 2D
hypercubic lattice.
A comparison of the production curves obtained as a function of disorder and size

is shown in Fig. 10 for the fractal lattice, a conventional 2D hierarchical lattice, and
the eight-shaped lattice. We can understand the di3erence in the slope of the increase
of the water production curve based on the number of allowed paths that the 1uid
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Fig. 9. Size and disorder e3ects of 10 realizations of local permeability on a fractal lattice with nodes
removed to have the same pore volume as a square lattice. The solid line represents the average value.

must take to cross the sample. In the conventional square lattice the number is larger
than those for the case of the eight-shaped lattice, and smaller than for the case of
the fractal lattice, since we may have more paths that go across the larger number
of nodes. Note the excellent agreement between the results obtained with the di3erent
structures.

3.4. Capillary pressure e6ects

In Fig. 11 the e3ects of the capillary pressure term on the water cut curves is shown.
In a homogeneous system, it is seen that as the capillary pressure e3ect increases the
breakthrough times are reduced in a way similar to the e3ect of the disorder on such
lattice. The water cut curves are less steep as the pb parameter in Eq. (7) gets larger.

When disorder is included, there is a competition between the disorder e3ect and
the capillary pressure e3ect. It is seen that for a mild disorder condition described by
	=0:5, the capillary pressure e3ect is less pronounced when compared to a homo-
geneous system; however, the overall trend is similar on both systems. As disorder
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Fig. 10. Comparison of the e3ects of disorder and size on water cut curves on a fractal lattice, an eight-shaped
hierarchical lattice and a square lattice.

is increased, it is observed that disorder e3ects become dominant over capillary ones.
Now, the breakthrough times get larger when pb increases, and the fastest breakthrough
is observed when there are no capillary e3ects. In the 4gure, it is shown that when
	=0:2, both e3ects are of the same order, whereas for 	=0:1, disorder e3ects control
the breakthrough time.

4. Anisotropy e!ects of �ow properties

Oil reservoirs typically exhibit a signi4cant permeability anisotropy. The knowledge
of the impact of the anisotropy in 1uid production has a signi4cant economic impor-
tance in developing and managing such reservoirs, since it may help in the optimization
of injection patterns to obtain the maximum sweep e=ciency. Thus, it is interesting
to study the impact of permeability anisotropy on the total recovery of a water1ood
project, which is essentially the injection experiment that was referred to in the previous
section [14].
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Fig. 11. Capillary pressure e3ects on the water cut curves for disordered systems of order 6.

The fractal Bernasconi lattice allows to investigate the e3ect of permeability anisotropy
owing to the presence of the 4fth bond on the basic motif structure of Fig. 1. The
permeability anisotropy was varied altering the values of the horizontal and vertical
transmissibilities of the gridblocks. To this end, we have run simulations on a lat-
tice of order 5, with di3erent permeability distributions assigned to the vertical and
horizontal bonds of a corresponding square lattice mapping. The distributions are of
power law form described by Eq. (1). The average and variance of this distribution
is completely described by the 	 parameter. Three cases that di3er in an anisotropy
ratio, de4ned as the ratio of the average value of the permeability of vertical bonds
to the one of horizontal bonds, i.e., 〈ky〉=〈kx〉 were compared: (a) an isotropic sample
with 〈ky〉=〈kx〉=1:0 (the same 	 parameter for the horizontal and vertical distribution),
(b) an anisotropy condition with 〈ky〉=〈kx〉=4:5, and (c) an anisotropic situation with
〈ky〉=〈kx〉=0:2.
The same simulations were run on the Bernasconi fractal lattice with the method

proposed in this work, and on a square lattice following conventional methods. The
water production curves are given in Fig. 12 for the three anisotropy ratio and disorder
condition described by 	=0:2. The same behavior is observed for 	=0:5 and 0.1,
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Fig. 12. Anisotropy e3ects on water cut curves for disordered systems of order 5 on the fractal and the
square lattice. We compare the isotropic case with anisotropy ratio of 0.2 and 4.5, respectively.

respectively. As mentioned in Section 3, these 	 values may be associated to mild,
medium and strong disorder conditions.
A systematic trend is observed for all the cases. For an anisotropy ratio smaller than

one (of 0.2 in Fig. 12), the breakthrough times are shorter than the values observed for
an isotropic system, whereas for an anisotropy ratio larger than 1 (of 4.5 in Fig. 12), the
breakthrough times are delayed with respect to the isotropic condition. The behavior of
the breakthrough time with anisotropy can be understood in terms of the number of al-
lowed paths that the 1uid has in a particular case. For an anisotropy ratio smaller than 1,
the vertical permeabilities are much smaller than the horizontal values, producing a
sort of channeling behavior, and thus a smaller breakthrough time. On the contrary,
when the anisotropy ratio is larger than 1, the vertical permeabilites are the ones that
favor the 1uid conduction. Since in the injection design the produced 1uid is measured
from the right-hand side of the sample, the 1uid needs to go through longer paths
giving rise to a later breakthrough time.
A similar study was done by Chang and Mohanty using conventional simulations

[15].
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5. Summary and discussion

We may summarize the main results presented here as follows:
A fractal lattice can be used to solve the two-phase 1ow equations including capil-

lary pressure by using a renormalization group approach, which turns out to be at least
40 times faster than conventional simulation methods. These computational advantages
allow to study the e3ect of size, disorder and anisotropy on 1ow properties including
capillary e3ects. For a given system size, it is observed an interplay between capillary
pressure and disorder e3ect which manifests on the breakthrough times behavior, mak-
ing the interpretation of the 1uid production curves a non-trivial one when both e3ects
are present.
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